			The state of the s		
Reg. No.:					

Question Paper Code: 97112

B.E./B.Tech. DEGREE EXAMINATION, DECEMBER 2015/JANUARY 2016.

First Semester

Civil Engineering

MA 1101 - MATHEMATICS - I

(Common to all branches)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

If
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 3 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$
 then find the eigen values of A^{-1} .

2. Find the quadratic form associated with the symmetric matrix

$$A = \begin{bmatrix} 2 & 5 \% 2 & -1 \\ 5/2 & 3 & 3/2 \\ -1 & 3 \% 2 & 4 \end{bmatrix}$$

- 3. Find the angle between the straight lines $\frac{x}{2} = \frac{y}{-2} = \frac{z}{1}$ and $\frac{x-4}{2} = \frac{y-5}{1} = \frac{z+6}{2}$.
- 4. Find the equation of the sphere passing through the circle given by $x^2 + y^2 + z^2 + 3x + y + 4z 3 = 0$ and $x^2 + y^2 + z^2 + 2x + 3y + 6 = 0$ and the point (1, -2, 3).
- Find the radius of curvature of the curve $y^2 = x^3$.
- 6. Define the envelope of the family of curves.
- If $u = x^3y^3 + x^2y^3$ and $x = t^2$, y = 2t then find $\frac{du}{dt}$ without substituting x and y in u.
- 8. If $u = x^2 y^2$, v = 2xy evaluate $\frac{\partial(x, y)}{\partial(u, v)}$.

- 9. Find the particular integral of $(D^2 4D + 3)y = x^2$.
- 10. Convert the differential equation $(x^2D^2 + xD + 1)y = \sin(2\log x)\sin(\log x)$ into an equation having constant coefficients.

PART B
$$-$$
 (5 × 16 = 80 marks)

11. (a) Reduce the quadratic form $8x_1^2 + 7x_2^2 + 3x_3^2 - 12x_1x_2 - 8x_2x_3 + 4x_3x_1$ into the canonical form through an orthogonal transformation. Write down the orthogonal transformation, which you use. Find the nature, rank, index and signature of the quadratic form. (16)

Or

- (b) (i) Solve $(2x+3)^2 y'' (2x+3)y' 12y = 6x$. (8)
 - (ii) Solve by the variation of parameters method $\frac{d^2y}{dx^2} + y = \sec x$. (8)
- 12. (a) (i) Find the equation of the image of the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{4}$ in the plane 2x + y + z = 6. (8)
 - (ii) Find the length of the shortest distance between the pair of lines $\frac{x-2}{2} = \frac{y+1}{3} = \frac{z}{4}; \ 2x+3y-5z-6 = 0 = 3x-2y-z+3. \tag{8}$

Or

- (b) (i) Find the equation of the tangent plane of the sphere $x^2 + y^2 + z^2 4x + 2y 6z + 5 = 0$ which are parallel to the plane 2x + 2y z = 0. Find also their point of contact. (8)
 - (ii) Find the equation of the cone whose vertex is (3, 1, 2) and the base curve is $2x^2 + 3y^2 = 1$; z = 1. (8)
- 13. (a) (i) If the center of curvature of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at one end of the minor axis lies at the other end, then prove that the eccentricity of the ellipse is $\frac{1}{\sqrt{2}}$.
 - (ii) Prove that the evolute of the tractrix $x = a(\cos\theta + \log[\tan(\theta/2)]) \text{ and } y = a\sin\theta \text{ is a catenary.}$

Or

- (b) (i) Find the envelope of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a and b are connected by the relation $a^2 + b^2 = c^2$, c being a constant.
 - (ii) Find the evolute of the rectangular hyperbola $xy = c^2$.

14. (a) (i) If
$$u = \tan^{-1} \left[\frac{x+y}{\sqrt{x}+\sqrt{y}} \right]$$
 show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{4} \sin 2u$. (8)

(ii) Find the minimum value of $x^2 + y^2 + z^2$ given that ax + by + cz = p. (8)

Or

(b) (i) If
$$u = e^{xy}$$
, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{2} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right]$. (8)

- (ii) Expand $e^{-x} \log y$ as a Taylor series expansion about x = 0 and y = 1 upto third order terms. (8)
- 15. (a) (i) Solve $(D^2 + D)y = x \cos x$. (8)
 - (ii) Solve the following simultaneous equation $\frac{dx}{dt} + y = \sin t, \ x + \frac{dy}{dt} = \cos t \text{ given } x(0) = 2, \ y(0) = 0.$ (8)

Or

(b) (i) Verify Cayley-Hamilton theorem for the matrix
$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$
. Also compute A^{-1} and A^4 .

(ii) Diagonalise the matrix
$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & = 2 & 1 \end{bmatrix}$$
. (8)